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Role played by the interfacial shear in the
instability mechanism of a viscous liquid jet

surrounded by a viscous gas in a pipe

By S. P. LIN  J. N. CHEN

Department of Mechanical and Aeronautical Engineering, Clarkson University,
Potsdam, NY 13699-5725, USA
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The role of interfacial shear in the onset of instability of a cylindrical viscous liquid jet
in a viscous gas surrounded by a coaxial circular pipe is elucidated by use of an energy
budget associated with the disturbance. It is shown that the shear force at the
liquid–gas interface retards the Rayleigh-mode instability which leads to the breakup
of the liquid jet into drops of diameter comparable to the jet diameter, due to capillary
force. On the other hand the interfacial shear and pressure work in concert to cause the
Taylor-mode instability which leads the jet to break up into droplets of diameter much
smaller than the jet diameter. While the interfacial pressure plays a slightly more
important role than the interfacial shear in amplifying the longer-wave spectrum in the
Taylor mode, the shear stress plays the main role of generating the disturbances of
shorter wavelength.

1. Introduction

A good knowledge of jet instability is relevant to many industrial processes including
spray formation in internal combustion engines, ink jet printing, jet cutting and spray
coating. References on specific industrial applications can be found in many articles
cited in a recent review article by Lin & Reitz (1998). The interfacial shear also plays
an important role in environmental fluid mechanics, such as wind-generated waves
(Benjamin 1959; Miles 1993).

Plateau (1873) observed that a cylindrical liquid jet tends to break up into equal
segments of length which is nine times the jet radius. The spherical drops formed from
these segments give the minimum surface energy for the same jet volume. Neglecting
the effects of gravity and ambient gas, Rayleigh (1879) showed that the origin of the
jet breakup is the hydrodynamic instability. He introduced into the jet infinitesimal
disturbances that may grow or decay everywhere in the jet at the same rate. He found
that the fastest growing disturbances had a wavelength equalling nine times the jet
radius. Weber (1931) and Chandrasekhar (1961) found that the liquid viscosity has
only stabilizing effects of reducing the breakup rate and increasing the drop size.
Chandrasekhar (1961) also proved that the mechanism of Rayleigh jet instability is
capillary pinching. Keller, Rubinow & Tu (1972) observed that these theories were
based on the assumption that the disturbances are temporally growing, while the
observed disturbances actually grow in space in the flow direction. They extended
Rayleigh’s analysis to spatially growing disturbances and found that Rayleigh’s results
are relevant only to the case of large values of the Weber number which is the ratio of
the liquid inertia force to the surface tension force per unit area of the interface. For
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a Weber number of order one or smaller they found a new mode of faster growing
disturbances of much larger wavelength than those of the Rayleigh mode. They
conjectured that this new mode of disturbances had not been observed because of its
extremely long wavelength. Leib & Goldstein (1986a, b) showed that this new mode is
actually associated with the absolute instability, and the Rayleigh mode is associated
with the convective instability. The disturbances can only be convected downstream in
a convectively unstable jet, but in an absolutely unstable jet the disturbances are
propagated in the downstream as well as in the upstream directions. Attempts have
been made to capture an image of absolutely unstable jets (Monkewitz 1990). Only
recently have clear images of absolutely unstable jet been reported, by Vihinen,
Honohan & Lin (1997). The transition from drop formation to dripping of a liquid jet
was conjectured earlier to be related to the transition from a convective to an absolute
instability by Lin & Lian (1989), and by Monkewitz (1990). This conjecture was
discussed recently by LeDizes (1997) in the light of global absolute instability.

In the above mentioned theories, the predicted drop sizes are of the same order as
the jet diameter. Thus, these theories cannot be applied to the atomization phenomenon
which is the breakup of a liquid jet into droplets much smaller than the jet diameter.
To explain the atomization process, Taylor (1963) took the gas density into account.
He considered the limiting case of an infinitely thick jet and extremely small gas-to-
liquid density ratio. Taylor’s analysis for the case of temporally growing disturbances
was extended by Lin & Kang (1987) to the case of spatially growing disturbances in a
dense gas.

Unified theories which delineate both the Rayleigh and the Taylor modes of
instability with the same characteristic equation have been advanced by Sterling &
Sleicher (1975) for the case of temporally growing disturbances, and by Lin & Lian
(1989, 1990) for the case of spatio–temporal disturbances. The effect of gas viscosity
was taken into account only approximately in these theories. The gas viscosity was
fully included in the stability analysis of Lin & Ibrahim (1990), and Lin & Lian (1993).
They solved the problem with an eigenfunction expansion. However, they did not
elucidate the precise roles of interfacial shear force relative to all other forces in the jet
breakup. To fill in this information gap, we calculate the power inputs due to all forces
which participate in causing the kinetic energy of the disturbance to grow in a volume
of the liquid jet. The relative importance of each force is identified by comparing it with
all other forces in the energy budget, which is formulated in §2. Although the solution
of Lin & Lian (1993) provides meaningful eigenvalues, the corresponding eigenvectors
are not sufficiently accurate for the evaluation of all items in the energy budget. A more
accurate solution is obtained by use of the Chebyshev-collocation method which is
described in §3. The sign and numerical values of eleven items in the energy budget are
determined for a wide range of relevant flow parameters. The results are presented in
§4 where the roles of surface tension force, the pressure fluctuation and the normal and
tangential viscous forces in the jet instability is discussed. In particular the role of the
interfacial shear in the Rayleigh and Taylor modes of jet instability is elucidated.

2. Formulation

Consider the instability of an incompressible Newtonian liquid jet of radius R
"
. The

jet is surrounded by a viscous gas enclosed in a vertical pipe of radius R
#

which is
concentric with the jet. For the jet to maintain a constant radius, the pressure gradients
in the steady liquid and gas flows must maintain the same constant value. This will
allow the pressure force difference across the liquid–gas interface to be exactly balanced
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F 1. Basic flow velocity distribution, N¯ 0.018, l¯ 10, Re¯ 1000. ——, 1}Fr¯ 0, We¯
400, Q¯ 0.0013; - - - - -, 1}Fr¯ 0.0001, We¯ 4761.9, Q¯ 0.013; – – –, liquid–gas interface.

by the surface tension force as required. Such coaxial flows, which satisfy exactly the
Navier–Stokes equations are given by (Lin & Ibrahim 1990)
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the magnitude of the jet velocity on the z-axis, r is the radial distance normalized with
R

"
, W(r) is the axial velocity distribution normalized with W

!
, µ is the dynamic

viscosity, ρ is the density, and g is the gravitational acceleration in the negative z-
direction. Two different basic flow velocity distributions are given in figure 1. They are
obtained in two different regions of the parameter space. The growth rates of the
disturbances in these two basic flows are given in figures 2 and 3. The physical
mechanisms of jet instability are qualitatively different in these two regions as will be
shown in the next section. The existence of these two separate regions can be
demonstrated by use of a dimensional argument. There are two obvious characteristic
lengths in the problem: the jet radius R

"
and the capillary length S}ρ

#
W #

!
, S being the

surface tension. If the consequence of instability is the formation of drops whose radii
a are comparable with the jet diameter as in the Rayleigh regime, then

a

R
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ρ
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¯
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,

where We is the Weber number. Thus in the Rayleigh regime QCWe−". On the other
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F 2. Amplification curve for the Rayleigh mode, Re¯ 1000, 1}Fr¯ 0, We¯ 400,
Q¯ 0.0013, N¯ 0.018, l¯ 10.
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F 3. Amplification curve for the Taylor mode. Re¯ 1000, 1}Fr¯ 0.0001, We¯ 4761.9,
Q¯ 0.013, N¯ 0.019, l¯ 10.

hand the Taylor spray droplets scale with aiR
"
, and thus QjWe−" according to the

above relation. Of course the exact regions of these regimes also depend on other flow
parameters.

The onset of instability of the basic flow described by (1) with respect to infinitesimal
disturbances is governed by the linearized Navier–Stokes equations

Q{
α ¥

t
�αWα[¡�α�α[¡Wα ¯®¡pαRe−"N{

α ¡[τα, (2)

¡[�α ¯ 0 (α¯ 1, 2), (3)

Q{
α ¯ ρα}ρ

"
, N{

α ¯µα}µ
"
,
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where Wα is the basic flow velocity vector the magnitude of which is given by (1), �α,
pα and t are dimensionless velocity perturbation, pressure disturbance, and time
normalized respectively with W

!
, ρ

"
W #

!
, and R

"
}W

!
. For the Newtonian fluids

considered, the rate of strain τα in (2) is given by

τα ¯ [¡�α(¡�α)T ],

where the superscript T stands for transposition.
The boundary conditions at the perturbed liquid–gas interface which is at the radial

location r¯ 1d when measured in the unit of R
"
, can be linearized by use of the

Taylor series expansions of all variables involved about r¯ 1, and retaining only terms
of first order in the perturbations. Hence the interfacial conditions are to be evaluated
at r¯ 1 with d as an additional unknown. Since the interface is a material surface, d
must satisfy at r¯ 1 the kinematic condition

d
,t
W

"
d
,z

¯ u
"
, (4)

where u is the radial velocity component in the cylindrical coordinates (r, θ, z), and the
commas followed by the subscripts denote partial differentiation with respect to the
independent variables designated by the subscripts. Other interfacial kinematic
conditions are the continuity of the radial and axial components of the velocity across
the interface respectively given by
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#
3 u

"
®u

#
¯ 0, (5)
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#
¯ 0, (6)

where w is the axial component of the perturbation velocity (u, �,w) in the cylindrical
coordinate system. Note that the disturbance is considered to be axisymmetric, and
thus �¯ 0. The balancing of forces per unit area of interface in tangential and normal
directions leads respectively to the dynamic conditions at r¯ 1,
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The boundary condition at the pipe wall is the no-slip condition at r¯R
#
}R

"
¯ l.

In order to trace the energy sources of the instability, we balance the energy budget
in a disturbed liquid jet. A history of the use of energy budgets can be found in Joseph
& Renardy (1992). Consider a control volume of the liquid over one wavelength, λ, of
the disturbance. Forming the dot product of (2) for liquid (α¯ 1) with �

"
, integrating

over the control volume, using (3) and the Gauss theorem to reduce some of the volume
integrals to surface integrals, averaging over one wavelength λ and one wave period
T¯ 2π}ω

i
, ω

i
being the wave frequency, we arrive at the energy equation
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where e¯ �
"
[�

"
}2 is the disturbance kinetic energy, and V and A stand respectively for

the control volume and surface area. Thus the left-hand side of (9) represents the time
rate of change of the disturbance kinetic energy in the control volume. The first term
on the right-hand side of (9) gives the time rate of mechanical energy transfer between
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the disturbance and the basic flow through the Reynolds stress, and the last term gives
the mechanical energy dissipation through liquid viscosity. The second and third
integrals on the right-hand side of (9) gives respectively the rates of work done by the
pressure and the viscous stress of the liquid. These two integrals will be transformed
by use of the boundary conditions (7) and (8) to better explain the physics involved.
Applying (7) in the evaluation of the surface integrals involving p

"
, and applying (8) in

the evaluation of the surface integral involving the shear stress, one can write the
energy budget (9) as
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Each term in (10) represents the phase-averaged time rate of change of a physically
distinctive factor per unit length of the liquid control volume enclosed by the interface
of length λ on the side and by the two circular lids at z¯ 0 and ®λ. In (10) KE is the
time rate of change of the disturbance kinetic energy. The last term DIS is the rate of
mechanical energy dissipation through viscosity in the volume, which tends to reduce
KE as it is always negative. The energy transfer between the disturbance and the basic
flow through the Reynolds stress is represented by REY, the sign of which depends on
the flow parameters. The rest of the surface integrals in (10) represent various rates of
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work done on the control surface. PRG represents the rate of work done by the gas
pressure fluctuation on the liquid jet, if it is positive. If it is negative, the work is done
by the liquid jet on the surrounding gas at the expense of the disturbance kinetic
energy. The same sign convention is followed by the rest of the work terms. SUT is the
rate of work done by the surface tension. SHG is the rate of work done by the shear
stress exerted by the fluctuating gas at the interface. SHB is the rate of work done by
the shear stress associated with the basic flow distortion caused by the interfacial
displacement. NVG represents the rate of work done by the normal viscous stress
exerted by the fluctuating gas at the interface. SHL and NVL represent respectively the
rates of work done by the tangential and normal components of the viscous stress at
the top and bottom ends of the control volume. The rate of the pressure work at the
top and bottom ends of the control volume is given by PRL.

Each integral on the right-hand side of (10) represents a different physical factor
which affects the instability of the liquid jet. Therefore the relative magnitude as well
as the sign of each term must be evaluated. To achieve this, we must carry out the
stability analysis which provides the functions appearing in the integrands of (10). An
accurate eigenvector solution is obtained by use of the Chebyshev-collocation method
(Boyd 1989) which is described in the next section. The eigenfunctions obtainable from
the results of Lin & Ibrahim (1990) and Lin & Lian (1993) are not sufficiently accurate
for the present purpose.

3. Stability analysis

The onset of instability of the basic flow with respect to axisymmetric disturbances
is considered. Equation (3) allows one to express the radial and axial components of
the velocity disturbance in terms of the Stokes stream function ψα as

uα ¯
1

r
ψα,z

, wα ¯®
1

r
ψα,r

. (12)

Arbitrary Fourier components of ψα and the corresponding pressure and interfacial
displacement d can be written as

[ψα(r,z,t), pα(r, z, t), d(z, t)]¯ [φα(r), ζα(r), ξ] eikz+
ωt, (13)

where [φα, ζα, ξ ] is the perturbation amplitude corresponding to the complex
wavenumber k¯k

r
ik

i
and the complex wave frequency ω¯ω

r
iω

i
. Substitution

of the Fourier mode solution into the curle of the linearized Navier–Stokes equation
results in the Orr–Sommerfeld equation (Drazin & Reid 1981)
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d
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The boundary condition at the vertical pipe wall r¯ l is the no-slip condition,
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By use of (12) and (13), the boundary conditions at the interface (4), (5), (6), (7) and (8)
can be written respectively as
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where the pressure amplitude can be obtained from the linearized Navier–Stokes
equation and is given by
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The disturbance along the axis r¯ 0 must be bounded. It follows from (12) that

φ
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Dφ
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Equations (14)–(25) constitute an eigenvalue problem.
The solution for φα will be obtained by use of the collocation method applying the

Chebyshev polynomials as the cardinal function of Lagrange. First we map the liquid
region r ` [0, 1] into the Chebyshev space y ` [®1, 1] by use of the linear transformation

r¯ "

#
(y1), (26)

and map the gas region r ` [1, l ] into y ` [1,®1] by the transformation

r¯ 1®
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2
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It follows from (26) and (27) that the transformed Orr–Sommerfeld equation in y
remains the same except that the pth derivative in r in (14) must be replaced by
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¯ qp
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q
"
¯ 2 for the liquid domain,

q
#
¯

2

1®l
for the gas domain.

The same modification must be made in the boundary conditions. The pipe axis and
the pipe wall are now both at y¯®1, and the interface is at y¯ 1. The solution for
φα(y) will be expanded as

φα(y)¯ 3
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where hαj
is the Lagrange cardinal function, T

Nα
is the Chebyshev polynomial and the

prime denotes differentiation with respect to y, and the yα,j
are the Gauss–Lobatto

collocation points (Boyd 1989) given by

yαj
¯ cos 0πj

Nα
1 , j¯ 0, 1,…,Nα. (29)

The method of evaluation of the derivatives of φ at the collocation points can be found
in Boyd (1989). Substitution of φ in (28) and its derivatives into the transformed
Orr–Sommerfeld equation results in an equation of (N

"
N

#
2) unknown φα,j

. An
additional unknown ξ appears in the boundary conditions. Hence there are
(N

"
N

#
3) unknowns. The resulting system evaluated at yα,i

(i¯ 2, 3,…,Nα®2)
provides (Nα®3) equations from the Orr–Sommerfeld equation for each α, and nine
equations from the boundary conditions. The number of equations has been made the
same as the number of unknowns by not evaluating the Orr–Sommerfeld equation at
yα,i

(i¯ 0, 1,Nα®1,Nα). This is the so-called Lanczos method (1956). The vanishing
of the determinant of the coefficient matrix of the eigenvector φα,j

gives the
characteristic equation. The characteristic equation has the form

(A
ij
®ωB

ij
)φ

j
¯ 0, (30)

where A
ij

and B
ij

are the parts of coefficient matrix arising respectively from the time-
independent and time-dependent part of the Orr–Sommerfeld equation and its
boundary conditions. For a given set of flow parameters (Re,Fr,We,N,Q, l ) the
complex eigenvalues (k,ω) are obtained from the characteristic equation. Assuming the
jet to be convectively unstable, we assign a value of (k

r
,k

i
) such that k

r
" 0, k

i
! 0, and

obtain ω
r
and ω

i
with the subroutine DG2LCG in the IMSL library. If ω

r
" 0, we keep

the same value of k
r
but increase the value of k

i
and substitute the new value of (k

r
,

k
i
) into the characteristic equation, and then solve for (ω

r
,ω

i
) again with the same

subroutine. We repeat the same computation until a point (ω
r
¯ 0,k

i
" 0) is reached

from the domain ω
r
" 0,k

i
! 0. We repeat the same procedure for increasing values of

k
r
, and obtain the spatial amplification curve (ω

r
¯ 0,k

i
" 0) over a range of k

r
. This

procedure allows us to ascertain that the amplification curve in the complex k-plane
can be reached from the domain k

i
! 0,ω

r
" 0 so that the causality condition, i.e. the

condition that the disturbance does not exist in t! 0, can be satisfied (Bers 1983). This
procedure breaks down in a certain parameter space when saddle point and branch
point singularities appear in the complex k- and ω-planes. The jet is then absolutely
unstable (Bers 1983; Briggs 1964).

Some numerical results of stability analysis were given in figures 1–3 in §2. To test
the possible syntax and computer program errors, the results for the special cases
included in the present problem are checked against the known results of axisymmetric
Poiseuille flow (Davey & Drazin 1969) and core–annular flow (Preziosi, Chen & Joseph
1989). The numbers of terms retained in (28) are systematically increased until desired
significant digits are obtained for the eigenvalue, eigenvector, and its derivatives. A
typical example of the convergence test is given in table 1 in which six, five and four
significant digits are obtained for the eigenvalue, eigenvector, and its fourth derivative.
The eigenvectors and their derivatives corresponding to the calculated eigenvalues are
obtained by use of the IMSL subroutine G2CCG. The results of the energy budget will
be discussed in §4 after the following results on instability are discussed.

Figure 2 gives a spatial amplification curve ω
r
¯ 0 for the flow parameters specified

in the figure caption. Q and We are so chosen that QCWe−" to yield the Rayleigh
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N
"

N
#

k
i

ω
i

φ
"
(1) φiv

#
(1)

25 60 0.08025 4.6843 ®0.00370 ®55260
20 70 0.08112 4.6834 ®0.00389 ®56280
30 70 0.08112 4.6834 ®0.00389 ®56280
20 80 0.08106 4.6833 ®0.00391 ®56340
20 90 0.08105 4.6833 ®0.00391 ®56340
30 90 0.08106 4.6833 ®0.00391 ®56340
20 100 0.08105 4.6833 ®0.00301 ®56340

T 1. Convergence test : Re¯ 500, Fr−"¯ 0.0005, We¯ 10&, Q¯ 0.0013, N¯ 0.018,
l¯ 10, k

r
¯ 5.0.

mode. This curve can be approached from below starting with ω
r
" 0, k

i
! 0 for a

given k
i
. Hence the liquid jet for the given flow parameters is convectively unstable. The

maximum spatial amplification rate k
im

occurs at the wavenumber k
rm

¯ 0.684 which
is slightly smaller than the wavenumber for the maximum temporal growth rate found
by Rayleigh for an inviscid jet in vacuum. The cutoff wavenumber below which the
viscous jet is stable is k

rc
¯ 1. This value is the same as that found by Rayleigh, except

the jet is neutrally stable for the inviscid case. Another spatial amplification curve for
a different set of flow parameters is given in figure 3. Q and We are so chosen that
QjWe−" to yield the Taylor mode. The jet is again convectively unstable. However,
both k

rm
and k

rc
are much larger than those in figure 1. Hence the unstable

disturbances with a broader bandwidth of wavelength manifest themselves at the onset
of instability which leads to the formation of smaller droplets. Although the jets
specified in figures 2 and 3 are both convectively unstable, the physical origins of
instability are totally different as will be explained in the next section.

Figure 4 shows the emergence of a saddle point singularity in the (k
r
,k

i
)-plane. At

We¯ 2.703 and the rest of flow parameters specified in the figure caption, the jet is
convectively unstable. The spatial amplification curve is given by the solid line. When
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the value of We is decreased to 2.632 while the rest of flow parameters remain the same
a saddle point at k

r
¯ 1.2162, k

i
¯ 0.21658 appears, and the jet becomes absolutely

unstable. The curve ω
r
¯ 0 has two branches shown as dotted lines ; ω

i
increases with

increasing k
r
along the upper branch but decreases along the lower branch. Thus for

the disturbances characterized by the upper and lower branches the wave packet
propagates respectively upstream and downstream as they grow. The jet is absolutely
unstable. The physical mechanism of absolute instability is basically the same as that
of the Rayleigh-mode convective instability, as will be shown in the next section.

4. Mechanism of jet breakup

All items in the energy budget (10) have been evaluated by integrating the integrands
obtained in the previous section by use of the Gauss quadrature method and the
Runge–Kutta method. The two methods are implemented respectively by use of the
IMSL subroutines DQDAGS and DIVPRK. The results obtained by the two methods
are compared for possible syntax or program error. All integrals in (10) are evaluated
independently from one another. The comparison of the sum of integrals on the right-
hand side of (10) with the integral on the left-hand side provides an independent check
of the overall numerical accuracy. Moreover, the number of terms in the eigenfunction
expansions were varied in the integrands of (10) to ascertain the numerical accuracy.
A minimum of three-significant-digit accuracy is maintained in the results to be
presented.

The energy budget in a liquid jet perturbed by the disturbances whose amplification
rates are depicted in figure 2 is displayed in table 2. All items of the energy budget,
except SHB which is zero in this case of Fr−"¯ 0, as can be seen from (1) and (10), are
listed for various wavenumbers for comparisons. The wavenumbers cover both stable
and unstable disturbances. All items are normalized with the maximum kinetic energy
term occurring at k

rm
¯ 0.684. It is seen from this table that the positive rates of change

of the disturbance kinetic energy are mainly due to the work done by the surface
tension on the control liquid volume. Although the viscous normal stress exerted by gas
represented by NVG as well as the normal stress work represented by PRL and NVL
at the top and bottom of the cylindrical liquid column also contribute to the growth
of the unstable disturbance, they are several orders of magnitude smaller than the
surface tension term SUT. The major factor which resists disturbance growth is viscous
dissipation. The pressure and the shear stress exerted by the gas at the liquid–gas
interface are also significant factors against instability. Although the liquid tangential
viscous stress represented by SHL and the bulk Reynolds stress represented by REY
also contributed to drain the kinetic energy from the disturbance, they are many order
of magnitudes smaller than DIS. However the sum of all negative terms is not
sufficiently large in magnitude to counter the destabilizing effect of the surface tension.
Thus the mechanism of the instability of a viscous liquid jet in a viscous gas by the
Rayleigh mode remains capillary pinching which was demonstrated by Chandrasekhar
(1961) who considered an inviscid liquid jet in vacuum. An inviscid Rayleigh jet is
neutral with respect to disturbances of wavenumber larger than the cutoff wavenumber
k
rc

¯ 1. Thanks to viscous dissipation these disturbances are actually damped
according to table 2. The stabilizing and destabilizing factors retain their signs in the
range of k

r
given in table 2, except for the Reynolds stress term, although some energy

is transferred from the mean flow to the disturbances of wavelength shorter than 2πR
"

the growth of which is suppressed by viscous, dissipation. Note that the change of SUT
with k

r
is not monotonic, and its maximum does not occur at k

rm
. In fact neither do any
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REY

(¬10−%) SUT
PRL

(¬10−$)
PRG

(¬10−$)
NVG

(¬10−$)
DIS

(¬10−")
SHL

(¬10−&)
NVL

(¬10−%)
SHG

(¬10−#)

0.140 0.127 ®0.120 0.129 0.0159 0.0335 0.00939 ®0.0128 ®0.00791 0.0245 ®0.115
0.200 0.248 ®0.234 0.254 0.0734 ®0.206 0.0252 ®0.0362 ®0.0225 0.0674 ®0.178
0.300 0.503 ®0.474 0.520 0.181 ®0.323 0.0795 ®0.113 ®0.0676 0.197 ®0.287
0.400 0.771 ®0.721 0.804 0.420 ®0.506 0.169 ®0.241 ®0.134 0.380 ®0.384
0.500 0.980 ®0.910 1.03 0.736 ®0.949 0.280 ®0.407 ®0.210 0.558 ®0.452
0.600 1.06 ®0.984 1.14 0.650 ®1.28 0.389 ®0.592 ®0.292 0.654 ®0.473
0.684 1.00 ®0.931 1.09 1.19 ®1.43 0.452 ®0.680 ®0.366 0.622 ®0.445
0.700 0.973 ®0.908 1.06 2.15 ®1.45 0.458 ®0.716 ®0.380 0.603 ®0.434
0.800 0.697 ®0.681 0.781 0.882 ®1.31 0.433 ®0.681 ®0.451 0.398 ®0.327
0.900 0.296 ®0.347 0.353 0.496 ®0.718 0.264 ®0.457 ®0.388 0.131 ®0.159
1.100 ®0.057 3.00 0.0672 1.47 ®2.47 1.47 ®1.20 ®1.09 0.00318 ®0.476
1.200 ®0.160 7.71 0.182 5.79 ®6.71 3.36 ®3.34 ®3.70 0.0105 ®1.08

T 2. Energy budget for the Rayleigh mode: Re¯ 1000, Fr−"¯ 0.0, We¯ 400, Q¯ 0.0013, N¯ 0.018, l¯ 10.

k
r

KE REY SUT PRL PRG NVG DIS
SHL

(¬10−%)
NVL

(¬10−%) SHG
SHB

(¬10−")

0.1 0.00298 5.12¬10−& 2.34¬10−% 6.95¬10−& 0.00184 2.77¬10−' ®1.18¬10−% ®1.78¬10−% 0.000429 4.4¬10−% 0.00551
1.0 0.536 ®0.0247 3.92¬10−% 0.0193 0.484 ®0.00194 ®0.0833 ®3.87 0.829 0.164 ®0.178
2.0 0.993 ®0.0544 ®0.219 0.0282 1.23 ®0.0196 ®0359 ®16.7 1.89 0.441 ®0.424
2.3 1.00 ®0.0573 ®0.358 0.0262 1.42 ®0.0309 ®0.467 ®19.2 1.87 0.531 ®0.499
3.0 0.826 ®0.0458 ®0.762 0.0198 1.76 ®0.0756 ®0.729 ®17.4 1.38 0.744 ®0.677
4.0 0.507 0.0154 ®1.12 0.0161 2.04 ®0.223 ®1.14 0.391 0.490 1.02 ®0.924
5.0 0.262 0.0292 ®0.585 0.0101 2.43 ®0.553 ®2.18 3.66 0.0544 1.26 ®1.18
6.0 ®0.809 ®0.118 1.43 ®0.0312 3.07 ®1.14 ®5.30 ®1.60 0.217 1.51 ®1.50
8.0 ®10.8 ®1.03 14.1 ®0.406 4.86 ®3.30 ®26.5 256.0 12.0 2.00 ®2.28

T 3. Energy budget for Taylor mode: Re¯ 1000, Fr−"¯ 0.0001, We¯ 4761.9, Q¯ 0.013, N¯ 0.019, l¯ 10.
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KE REY SUT
PRL

(¬10−#) PRG NVG DIS
SHL

(¬10−$)
NVL

(¬10−%) SHG SHB

1.00 0.273 ®0±534 ®6.06¬10−( 1.23 0.251 0.00306 ®0.115 ®0.612 0.892 0.212 ®0.0354
2.00 0.676 ®0.162 ®5.95¬10−% 1.94 0.778 ®0.00437 ®0.548 ®3.86 3.10 0.727 ®0.117
4.05 1.00 ®0.325 ®6.82¬10−$ 0.0668 1.84 ®0.157 ®2.28 ®12.5 4.92 2.24 ®0.297
6.00 0.848 ®0.378 ®0.0202 ®1.41 2.64 ®0.481 ®4.43 ®16.2 3.79 4.02 ®0.456

10.0 0.402 ®0.321 ®0.0607 ®1.61 3.26 ®1.23 ®9.03 ®12.1 1.22 8.55 ®0.738
15.0 0.191 ®0.215 ®0.113 ®0.823 2.98 ®1.59 ®16.2 ®5.79 0.295 16.5 ®1.07
20.0 0.108 ®0.134 ®0.149 ®0.361 2.36 ®1.51 ®26.4 ®2.49 0.0841 27.3 ®1.41
25.0 0.0566 ®0.0759 ®0.149 ®0.129 1.75 ®1.29 ®39.9 ®0.826 0.0212 41.4 ®1.75
30.0 0.0196 ®0.0329 ®0.0861 ®0±0238 1.06 ®0±901 ®56.9 ®0.111 0.00235 58.9 ®2.09
35.0 ®0.00717 ®0.00180 0.049 0.00198 0.915 ®0.987 ®77.2 ®0.0193 0.000308 79.7 ®2.44

T 4. Energy budget for Taylor mode: Re¯ 500, Fr−"¯ 0.0005, We¯ 10', Q¯ 0.0013, N¯ 0.018, l¯ 10.
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of the other terms change monotonically, and their maxima do not occur at the same
k
r
. This indicates the significance of interplay among all items in determining the

maximum growth rate.
Table 3 gives the energy budget in a liquid jet corresponding to figure 3 which

displays the amplification of disturbances giving rise to Taylor-mode instability. While
the surface tension work terms remain positive for wavenumbers smaller than 1 in both
Rayleigh and Taylor modes, they become negative for shorter unstable disturbances in
the Taylor mode. Hence surface tension is not responsible for initiating the formation
of droplets whose radius is smaller than the jet radius. The dominant positive terms are
PRG and SHG. Thus the work done by the fluctuating gas pressure and the tangential
shear stress at the interface is mainly responsible for the Taylor-mode instability. Other
positive terms PRL, SHL, and NVN are at least one order of magnitude smaller than
these two terms. Recall that PRG and SHG are negative in table 2. This is the
fundamental difference in the origin of instability for the Rayleigh and the Taylor
modes. Another fundamental difference is that while the normal component of the gas
viscous stress plays a minor role in destabilizing the Rayleigh jet, it plays a major role
together with the viscous dissipation and the reverse energy transfer to the mean flow
through the Reynolds stress in stabilizing the disturbance of wavenumbers greater than
the cutoff wavenumber k

rc
¯ 5.4. This is clearly displayed in table 3. Although it has

been believed that interfacial shear is important for the generation of Taylor-mode
instability (Lin & Reitz 1998), and it has been pointed out (Lin & Creighton 1990) that
the interfacial pressure fluctuation may be equally important, the relative importance
of these two factors has never been quantitatively demonstrated before. Table 3
presents the case in which the gas pressure fluctuation plays a slightly larger role than
the interfacial shear. Table 4 presents another case of Taylor mode instability in which
the interfacial shear plays a more significant role than the pressure fluctuation. Note
that the magnitude of SHG increases more rapidly than that of PRG as k

r
is increased

and eventually dominates over the gas pressure term for this case. Thus the unstable
disturbances near the cutoff wavenumber k

rc
¯ 33.5 are mainly generated by the shear

stress fluctuation with significant help from the gas inertia force manifested in the gas
pressure fluctuation.

The energy budget at the saddle point in figure 4 is : KE¯ 0.3321, REY
¯®0.2639¬10−%, SUT¯ 0.1957, PRL¯ 0.1702, PRG¯®0.7063¬10−$, NVG¯
0.1890¬10−$, DIS¯®0.2914¬10−", SHL¯®0.5326¬10−%, NVL¯ 0.1226¬10−#,
and SHG¯®0.1027¬10−#. Note that the rate of pressure work done by the liquid at
the upper and lower ends of the control volume PRL is increased significantly over that
in table 2. Otherwise all of the work terms retain the same qualitative roles. Hence the
mechanism of the jet breakup by absolute instability is essentially the same as that of
the Rayleigh mode by capillary pinching except the axial jet pressure fluctuation plays
an equally important role.

5. Conclusion

The onset of instability in a viscous liquid jet in the presence of a surrounding viscous
gas may manifest itself as convective or absolute instability depending on the flow
parameters. There are two different modes of convective instability, the Rayleigh and
Taylor modes, these two modes are caused by fundamentally different physical
mechanisms. The main cause of the Rayleigh-mode instability is capillary pinching
which is resisted by the inertia in the form of pressure fluctuation and the viscous shear
stress exerted by the gas at the interface. On the other hand, the gas pressure and shear
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fluctuations are the main means of supplying energy to the disturbances in the Taylor-
mode instability. The surface tension tends to resist the formation of short waves. The
unstable disturbances in an absolutely unstable jet propagate both in the upstream and
downstream directions, accompanied by a large liquid pressure fluctuation in the axial
direction. This pressure fluctuation is of the same order of magnitude as the surface
tension term. Capillary pinching remains a dominant source of absolute instability as
well as the Rayleigh mode of convective instability.

This work was supported in part by grant No. NAG3-1891 of NASA and DAAH04-
93-G0395 of ARO.
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